Roles of aromatic residues in high interfacial activity of naja naja atra phospholipase A(2)
نویسندگان
چکیده
Acidic phospholipase A2 (PLA2) from the venom of Chinese cobra (Naja naja atra) has high activity on zwitterionic membranes and contains six aromatic residues, including Tyr-3, Trp-18, Trp-19, Trp-61, Phe-64, and Tyr-110, on its putative interfacial binding surface. To assess the roles of these aromatic residues in the interfacial catalysis of N. n. atra PLA2, we mutated them to Ala and measured the effects on its interfacial catalysis. Enzymatic activities of the mutants toward various vesicle substrates and human neutrophils indicate that all but Trp-18 make significant contributions to interfacial catalysis. Among these aromatic residues, Trp-19, Trp-61, and Phe-64 play the most important roles. Binding affinities of the mutants for phospholipid-coated beads and their monolayer penetration indicate that Trp-19, Trp-61, and Phe-64 are critically involved in interfacial binding of N. n. atra PLA2 and penetrate into the membrane during the interfacial catalysis of N. n. atra PLA2. Further thermodynamic analysis suggests that the side chain of Phe-64 is fully inserted into the hydrophobic core of membrane whereas those of Trp-19 and Trp-61 are located in the membrane-water interface. Together, these results show that all three types of aromatic residues can play important roles in interfacial binding of PLA2 depending on their location and side-chain orientation. They also indicate that these aromatic side chains interact with membranes in distinct modes because of their different intrinsic preference for different parts of membranes.
منابع مشابه
Zinc and barium inhibit the phospholipase A2 from Naja naja atra by different mechanisms.
The mode of inhibition of the phospholipase A2 (PLA2) enzyme from the Chinese cobra (Naja naja atra) by Zn2+ is qualitatively different from inhibition by Ba2+. Inhibition by Ba2+ shows the kinetic characteristics of a conventional competitive inhibitor acting to displace Ca2+ from a single essential site, but Zn2+ has the paradoxical property of being more inhibitory at high than at low Ca2+ c...
متن کاملCrystal structure of cobra-venom phospholipase A2 in a complex with a transition-state analogue.
The crystal structure of a complex between a phosphonate transition-state analogue and the phospholipase A2 (PLA2) from Naja naja atra venom has been solved and refined to a resolution of 2.0 angstroms. The identical stereochemistry of the two complexes that comprise the crystal's asymmetric unit indicates both the manner in which the transition state is stabilized and how the hydrophobic fatty...
متن کاملMapping the catalytic pocket of phospholipases A2 and C using a novel set of phosphatidylcholines.
A set of radioiodinatable phosphatidylcholines (PCs) derivatized with the Bolton-Hunter reagent (BHPCs) was synthesized to probe the substrate recognition and activity of phospholipases. A common feature of this series is the presence of a bulky 4-hydroxyphenyl group at the end of the fatty acyl chain attached to position sn-2. The distance between the end group and the glycerol backbone was va...
متن کاملNaja naja atra venom ameliorates pulmonary fibrosis by inhibiting inflammatory response and oxidative stress
BACKGROUND Naja naja atra venom (NNAV) displays diverse pharmacological actions including analgesia, anti-inflammation and immune regulation.In this study, we investigated the effects of NNAV on pulmonary fibrosis and its mechanisms of action. METHODS To determine if Naja naja atra venom (NNAV) can produce beneficial effects on pulmonary fibrosis, two marine models of pulmonary fibrosis were ...
متن کاملIn Vitro and in Vivo Neutralizing Potential of Terminalia Arjuna Bark Extract against Naja Naja Venom
Envenoming’s by snake bite to involve medical emergencies and its clinical management is by the administration of antivenom. As antivenom was reported to induce early or late adverse reactions against human beings, snake venom neutralizing potential for aqueous bark of Terminalia arjuna extract was tested for the present research by in vitro and in vivo methods against Naja naja venom. In vitro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 38 49 شماره
صفحات -
تاریخ انتشار 1999